Genuine Dirac Half-Metals in Two-Dimensions

Adv Sci (Weinh). 2024 Feb;11(6):e2307297. doi: 10.1002/advs.202307297. Epub 2023 Dec 3.

Abstract

When spin-orbit coupling (SOC) is absent, all proposed half-metals with twofold degenerate nodal points at the K (or K') point in 2D materials are classified as "Dirac half-metals" owing to the way graphene is utilized in the earliest studies. Actually, each band crossing point at the K or K' point is described by a 2D Weyl Hamiltonian with definite chirality; hence, it should be a Weyl point. To the best of its knowledge, there have not yet been any reports of a genuine (i.e., fourfold degenerate) 2D Dirac point half-metal. In this work, using first-principles calculations, it proposes for the first time that the 2D d0 -type ferromagnet Mg4 N4 is a genuine 2D Dirac half-metal candidate with a fourfold degenerate Dirac point at the S high-symmetry point, intrinsic magnetism, a high Curie temperature, 100% spin polarization, topology robust under the SOC and uniaxial and biaxial strains, and spin-polarized edge states. This work can serve as a starting point for future predictions of intrinsically magnetic materials with genuine 2D Dirac points, which will aid the frontier of topo-spintronics research in 2D systems.

Keywords: 100% spin polarization; 2D half-metals; Dirac points; d0 ferromagnetic materials.