Kinetic modelling of ultrasound-triggered chemotherapeutic drug release from the surface of gold nanoparticles

Sci Rep. 2023 Dec 2;13(1):21301. doi: 10.1038/s41598-023-48082-9.

Abstract

Therapeutic ultrasound can be used to trigger the on-demand release of chemotherapeutic drugs from gold nanoparticles (GNPs). In the previous work, our group achieved doxorubicin (DOX) release from the surface of GNPS under low-intensity pulsed ultrasound (LIPUS) exposure. However, the specific release kinetics of ultrasound-triggered DOX release from GNPs is not known. Here, we present a release kinetics study of DOX from GNPs under ultrasound exposure for the first time. A novel dialysis membrane setup was designed to quantify DOX release from LIPUS-activated GNPs at 37.0 °C and 43.4 °C (hyperthermia temperature range). Contributions of thermal and non-thermal mechanisms of LIPUS-triggered DOX release were also quantified. Non-thermal mechanisms accounted for 40 ± 7% and 34 ± 5% of DOX release for 37.0 °C and 43.4 °C trials, respectively. DOX release under LIPUS exposure was found to follow Korsmeyer-Peppas (K-P) kinetics, suggesting a shift from a Fickian (static) to a non-Fickian (dynamic) release profile with the addition of non-thermal interactions. DOX release was attributed to an anomalous diffusion release mechanism from the GNP surface. A finite element model was also developed to quantify the acoustic radiation force, believed to be the driving force of non-thermal DOX release inside the dialysis bag.

MeSH terms

  • Doxorubicin / therapeutic use
  • Drug Liberation
  • Gold
  • Hyperthermia, Induced*
  • Metal Nanoparticles* / therapeutic use
  • Nanoparticles*
  • Renal Dialysis

Substances

  • Gold
  • Doxorubicin