Modeling the effects of land use/land cover changes on river runoff using SWAT models: A case study of the Danjiang River source area, China

Environ Res. 2024 Feb 1:242:117810. doi: 10.1016/j.envres.2023.117810. Epub 2023 Dec 1.

Abstract

Land use/land cover (LULC) is a crucial factor that directly influences the hydrology and water resources of a watershed. In order to assess the impacts of LULC changes on river runoff in the Danjiang River source area, we analyzed the characteristics of LULC data for three time periods (2000, 2010, and 2020). The LULC changes during these periods were quantified, and three Soil and Water Assessment Tool (SWAT) models were established and combined with eight LULC scenarios to quantitatively analyze the effects of LULC changes on river runoff. The results revealed a decrease in the cropland area and an increase in the forest, grassland, and urban land areas from 2000 to 2020. Grassland, forest, and cropland collectively accounted for over 94% of the total area, and conversions among these land types were frequent. The SWAT models constructed based on the LULC data demonstrated good calibration and validation results. Based on the LULC data in three periods, the area of each LULC type changed slightly, so the simulation results were not significantly different. In the subsequent LULC scenarios, we found that the expansion of cropland, grassland, and urban areas was associated with increased river runoff, while an increase in forest area led to a decrease in river runoff. Among the various LULC types, urban land exerted the greatest influence on changes in river runoff. This study establishes three SWAT models and combines multiple LULC scenarios, which is novel and innovative. It can provide scientific basis for the rational allocation of water resources and the optimization of LULC structure in the Danjiang River source area.

Keywords: Danjiang River source area; Land use change; Land use scenarios; River runoff; SWAT model.

MeSH terms

  • China
  • Hydrology / methods
  • Rivers
  • Soil*
  • Water
  • Water Movements*

Substances

  • Soil
  • Water