Tramadol suppresses growth of orthotopic liver tumors via promoting M1 macrophage polarization in the tumor microenvironment

Naunyn Schmiedebergs Arch Pharmacol. 2023 Dec 2. doi: 10.1007/s00210-023-02871-1. Online ahead of print.

Abstract

Tumor-associated macrophages (TAMs) are major infiltrating immune cells in liver cancer. They are polarized to anti-tumor M1 type or tumor-supporting M2 type in a dynamic changing state. Tramadol, a synthetic opioid, exhibits tumor-suppressing effect in several cancers, but whether it plays a role in TAMs polarization is uncertain. In the present study, the potential influence of tramadol on TAMs polarization was explored in liver cancer. An orthotopic murine Hepa 1-6 liver cancer model was constructed. The potential function of tramadol was evaluated by cell viability assay, EdU incorporation assay, flow cytometry, immunofluorescence, quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) assay, T cell proliferation and suppression assays and western blot. We found that tramadol suppressed proliferation and tumor formation of murine Hepa 1-6 cells in vitro and in vivo. Tramadol reprogramed the immune microenvironment to favor M1 macrophage polarization in orthotopic Hepa 1-6 tumors. Moreover, tramadol facilitated M1 macrophage polarization and inhibited M2 macrophage polarization of bone marrow-derived macrophages (BMDMs) and human THP-1 macrophages in vitro. Furthermore, tramadol-treated BMDMs promoted proliferation and activation of splenic CD4+ and CD8+ T cells. Tramadol induced cellular ROS production and mitochondrial dysfunction of BMDMs. Finally, tramadol activated NF-κB signaling in BMDMs and THP-1 macrophages, while inhibition of NF-κB signaling by JSH-23 attenuated the influence of tramadol on macrophage polarization. In conclusion, these data elucidated a novel anti-tumor mechanism of tramadol in liver cancer. Tramadol might be a promising treatment strategy for liver cancer patients.

Keywords: Liver cancer; Macrophage polarization; NF-κB; Tramadol; Tumor-associated macrophages.