Sensing profiles of the volume scattering function at 180° using a single-photon oceanic fluorescence lidar

Opt Express. 2023 Nov 20;31(24):40393-40410. doi: 10.1364/OE.505615.

Abstract

A novel oceanic fluorescence lidar technique has been proposed and demonstrated for remotely sensing the volume scattering function at 180° (βf), which can be used to further retrieve the profiles of the absorption coefficient of phytoplankton (aph) at 532 nm and chlorophyll concentration (Chl). This scheme has these features. 1) The single-photon detection technology is employed to enhance the detection sensitivity to the single-photon level, enabling the oceanic lidar to obtain fluorescence backscatter profiles. 2) In terms of algorithms, the Raman backscattered signals of the water are utilized to normalize the backscattered signals of chlorophyll fluorescence, effectively minimizing the depth-dependent variation of the differential lidar attenuation coefficient (Δ K l i d a r f r). To reduce the contamination of fluorescence signals in the Raman backscatter signals, a Raman filter with a bandwidth of 6 nm was chosen. Subsequently, a perturbation method is utilized to invert the βf of the fluorescence lidar. Finally, aph and Chl profiles can be inverted based on empirical models. 3) The value of Δ K l i d a r f r used in inversion is obtained through a semi-analytic Monte Carlo simulation. According to theoretical analysis, the maximum relative error of βf for Chl ranging from 0.01 mg/m3 to 10 mg/m3 is less than 13 %. To validate this approach, a field experiment was conducted aboard the R/V Tan Kah Kee in the South China Sea from September 4th to September 5th, 2022, resulting in continuous subsurface profiles of βf, aph, and Chl. These measurements confirm the robustness and reliability of the oceanic single-photon fluorescence lidar system and the inversion algorithm.