Neural network spectral relationship to improve an inherent optical properties data processing system for residual error correction

Opt Express. 2023 Nov 20;31(24):39583-39605. doi: 10.1364/OE.498601.

Abstract

The residual error was a critical indicator to measure the data quality of ocean color products, which allows a user to decide the valuable envisioned application of these data. To effectively remove the residual errors from satellite remote sensing reflectance (Rrs) using the inherent optical data processing system (IDAS), we expressed the residual error spectrum as an exponential plus linear function, and then we developed neural network models to derive the corresponding spectral slope coefficients from satellite Rrs data. Coupled with the neural network models-based spectral relationship, the IDAS algorithm (IDASnn) was more effective than an invariant spectral relationship-based IDAS algorithm (IDAScw) in reducing the effects of residual errors in Rrs on IOPs retrieval for our synthetic, field, and Chinese Ocean Color and Temperature Scanner (COCTS) data. Particularly, due to the improved spectral relationship of the residual errors, the IDASnn algorithm provided more accurate and smoother spatiotemporal ocean color product than the IDAScw algorithm for the open ocean. Furthermore, we could monitor the data quality with the IDASnn algorithm, suggesting that the residual error was exceptionally large for COCTS images with low effective coverage. The product effective coverage should be rigorously controlled, or the residual error should be accurately corrected before temporal and spatial analysis of the COCTS data. Our results suggest that an accurate spectral relationship of residual errors is critical to determine how well the IDAS algorithm corrects for residual error.