Impact of NAD+ metabolism on ovarian aging

Immun Ageing. 2023 Dec 2;20(1):70. doi: 10.1186/s12979-023-00398-w.

Abstract

Nicotinamide adenine dinucleotide (NAD+), a crucial coenzyme in cellular redox reactions, is closely associated with age-related functional degeneration and metabolic diseases. NAD exerts direct and indirect influences on many crucial cellular functions, including metabolic pathways, DNA repair, chromatin remodeling, cellular senescence, and immune cell functionality. These cellular processes and functions are essential for maintaining tissue and metabolic homeostasis, as well as healthy aging. Causality has been elucidated between a decline in NAD levels and multiple age-related diseases, which has been confirmed by various strategies aimed at increasing NAD levels in the preclinical setting. Ovarian aging is recognized as a natural process characterized by a decline in follicle number and function, resulting in decreased estrogen production and menopause. In this regard, it is necessary to address the many factors involved in this complicated procedure, which could improve fertility in women of advanced maternal age. Concerning the decrease in NAD+ levels as ovarian aging progresses, promising and exciting results are presented for strategies using NAD+ precursors to promote NAD+ biosynthesis, which could substantially improve oocyte quality and alleviate ovarian aging. Hence, to acquire further insights into NAD+ metabolism and biology, this review aims to probe the factors affecting ovarian aging, the characteristics of NAD+ precursors, and the current research status of NAD+ supplementation in ovarian aging. Specifically, by gaining a comprehensive understanding of these aspects, we are optimistic about the prominent progress that will be made in both research and therapy related to ovarian aging.

Keywords: Infertility; Metabolic homeostasis; NAD+ metabolism; Ovary aging.

Publication types

  • Review