Hydrophobic Porous Liquids with Controlled Cavity Size and Physico-Chemical Properties

Adv Sci (Weinh). 2024 Jan;11(4):e2305906. doi: 10.1002/advs.202305906. Epub 2023 Nov 30.

Abstract

Developing greener hydrometallurgical processes implies offering alternatives to conventional solvents used for liquid-liquid extraction (LLE) of metals. In this context, it is proposed to substitute the organic phase by a hydrophobic silica-based porous liquid (PL). Two different sulfonated hollow silica particles (HSPs) are modified with various polyethoxylated fatty amines (EthAs) forming a canopy that provides both the targeted hydrophobicity and liquefying properties. This study shows that these properties can be tuned by varying the number of ethylene oxide units in the EthA: middle-range molecular weight EthAs allow obtaining a liquid at room temperature, while too short or too long EthA leads to solid particles. Viscosity is also impacted by the density and size of the silica spheres: less viscous PLs are obtained with small low-density spheres, while for larger spheres (c.a. 200 nm) the density has a less significant impact on viscosity. According to this approach, hydrophobic PLs are successfully synthesized. When contacted with an aqueous phase, the most hydrophobic PLs obtained allow a subsequent phase separation. Preliminary extraction tests on three rare earth elements have further shown that functionalization of the PL is necessary to observe metal extraction.

Keywords: hollow silica spheres; hydrophobicity; nanoscale ionic materials; porous liquids; solvent extraction.