CSF 14-3-3β is associated with progressive cognitive decline in Alzheimer's disease

Brain Commun. 2023 Nov 22;5(6):fcad312. doi: 10.1093/braincomms/fcad312. eCollection 2023.

Abstract

Alzheimer's disease is a neurodegenerative disorder characterized pathologically by amyloid-beta plaques, tau tangles and neuronal loss. In clinical practice, the 14-3-3 isoform beta (β) is a biomarker that aids in the diagnosis of sporadic Creutzfeldt-Jakob disease. Recently, a proteomics study found increased CSF 14-3-3β levels in Alzheimer's disease patients, suggesting a potential link between CSF 14-3-3β and Alzheimer's disease. Our present study aimed to further investigate the role of CSF 14-3-3β in Alzheimer's disease by analysing the data of 719 participants with available CSF 14-3-3β measurements from the Alzheimer's Disease Neuroimaging Initiative. Higher CSF 14-3-3β levels were observed in the mild cognitive impairment group compared to the cognitively normal group, with the highest CSF 14-3-3β levels in the Alzheimer's disease dementia group. This study also found significant associations between CSF 14-3-3β levels and CSF biomarkers of p-tau, t-tau, pTau/Aβ42 ratios and GAP-43, as well as other Alzheimer's disease biomarkers such as Aβ-PET. An early increase in CSF 14-3-3β levels was observed prior to Aβ-PET-positive status, and CSF 14-3-3β levels continued to rise after crossing the Aβ-PET positivity threshold before reaching a plateau. The diagnostic accuracy of CSF 14-3-3β (area under the receiver operating characteristic curve = 0.819) was moderate compared to other established Alzheimer's disease biomarkers in distinguishing cognitively normal Aβ pathology-negative individuals from Alzheimer's disease Aβ pathology-positive individuals. Higher baseline CSF 14-3-3β levels were associated with accelerated cognitive decline, reduced hippocampus volumes and declining fluorodeoxyglucose-PET values over a 4-year follow-up period. Patients with mild cognitive impairment and high CSF 14-3-3β levels at baseline had a significantly increased risk [hazard ratio = 2.894 (1.599-5.238), P < 0.001] of progression to Alzheimer's disease dementia during follow-up. These findings indicate that CSF 14-3-3β may be a potential biomarker for Alzheimer's disease and could provide a more comprehensive understanding of the underlying pathological changes of Alzheimer's disease, as well as aid in the diagnosis and monitoring of disease progression.

Keywords: 14-3-3β; Alzheimer’s disease; CSF; biomarker; dementia.