Unveiling the RNA-mediated allosteric activation discloses functional hotspots in CRISPR-Cas13a

Nucleic Acids Res. 2024 Jan 25;52(2):906-920. doi: 10.1093/nar/gkad1127.

Abstract

Cas13a is a recent addition to the CRISPR-Cas toolkit that exclusively targets RNA, which makes it a promising tool for RNA detection. It utilizes a CRISPR RNA (crRNA) to target RNA sequences and trigger a composite active site formed by two 'Higher Eukaryotes and Prokaryotes Nucleotide' (HEPN) domains, cleaving any solvent-exposed RNA. In this system, an intriguing form of allosteric communication controls the RNA cleavage activity, yet its molecular details are unknown. Here, multiple-microsecond molecular dynamics simulations are combined with graph theory to decipher this intricate activation mechanism. We show that the binding of a target RNA acts as an allosteric effector, by amplifying the communication signals over the dynamical noise through interactions of the crRNA at the buried HEPN1-2 interface. By introducing a novel Signal-to-Noise Ratio (SNR) of communication efficiency, we reveal critical allosteric residues-R377, N378, and R973-that rearrange their interactions upon target RNA binding. Alanine mutation of these residues is shown to select target RNA over an extended complementary sequence beyond guide-target duplex for RNA cleavage, establishing the functional significance of these hotspots. Collectively our findings offer a fundamental understanding of the Cas13a mechanism of action and pave new avenues for the development of highly selective RNA-based cleavage and detection tools.

MeSH terms

  • Allosteric Regulation
  • CRISPR-Associated Proteins* / chemistry
  • CRISPR-Associated Proteins* / genetics
  • CRISPR-Associated Proteins* / metabolism
  • CRISPR-Cas Systems
  • Mutation
  • RNA / genetics
  • RNA, Guide, CRISPR-Cas Systems*

Substances

  • RNA
  • RNA, Guide, CRISPR-Cas Systems
  • CRISPR-Associated Proteins