State dependence of CO2 forcing and its implications for climate sensitivity

Science. 2023 Dec;382(6674):1051-1056. doi: 10.1126/science.abq6872. Epub 2023 Nov 30.

Abstract

When evaluating the effect of carbon dioxide (CO2) changes on Earth's climate, it is widely assumed that instantaneous radiative forcing from a doubling of a given CO2 concentration (IRF2×CO2) is constant and that variances in climate sensitivity arise from differences in radiative feedbacks or dependence of these feedbacks on the climatological base state. Here, we show that the IRF2×CO2 is not constant, but rather depends on the climatological base state, increasing by about 25% for every doubling of CO2, and has increased by about 10% since the preindustrial era primarily due to the cooling within the upper stratosphere, implying a proportionate increase in climate sensitivity. This base-state dependence also explains about half of the intermodel spread in IRF2×CO2, a problem that has persisted among climate models for nearly three decades.