MicroRNA3650 Promotes Gastric Cancer Proliferation and Migration through the PTEN/PI3K-AKT-mTOR and Hippo Pathways

Protein Pept Lett. 2023;30(11):966-973. doi: 10.2174/0109298665265642231020043809.

Abstract

Background: Gastric cancer (GC) is a malignant tumor with seriously poor outcomes. Studies have shown that microRNAs (miRNAs) play an omnifarious regulatory effect in GC. However, the role of miR-3650 in the progression of GC is not well known.

Methods: In this study, miR-3650 expression and its clinical significance were determined using clinical specimens. The biological functions of miR-3650 were determined in gastric cancer cell lines through CCK-8, cell scratch, and transwell experiments. Bioinformatics predictions, combined with Western blot experiments, were employed to explore its downstream molecular targets.

Results: We observed that miR-3650 was overexpressed in GC specimens and most cell lines, i.e., 77.8% (MKN28, SNU1, AGS, MKN45, N87, BGC823 and SGC7901). The overexpression correlated with advanced T-stage, N-stage, M-stage, and TNM-stage. Furthermore, miR-3650 promoted the proliferation and migration of gastric cancer cells, and its overexpression promoted the PI3K-AKT-mTOR pathway and inhibited the PTEN and hippo pathways. The potassium ion signaling pathway was also involved in the biological process of miR-3650 promoting cancer.

Conclusion: Therefore, we concluded that miR-3650/PTEN/PI3K-AKT-mTOR and miR-3650/hippo pathways are vital in the progression of GC and serve as novel targets for GC therapy.

Keywords: Gastric cancer; PTEN; hippo pathway.; miR-3650; migration; proliferation.

MeSH terms

  • Cell Line, Tumor
  • Cell Movement
  • Cell Proliferation
  • Gene Expression Regulation, Neoplastic
  • Humans
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • PTEN Phosphohydrolase / genetics
  • PTEN Phosphohydrolase / metabolism
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / genetics
  • Stomach Neoplasms* / genetics
  • TOR Serine-Threonine Kinases / genetics
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • Proto-Oncogene Proteins c-akt
  • Phosphatidylinositol 3-Kinases
  • TOR Serine-Threonine Kinases
  • MicroRNAs
  • PTEN protein, human
  • PTEN Phosphohydrolase