Hydrophobically Modified Silica-Coated Gold Nanorods for Generating Nonlinear Photoacoustic Signals

ACS Appl Nano Mater. 2021 Nov 26;4(11):12073-12082. doi: 10.1021/acsanm.1c02623. Epub 2021 Nov 11.

Abstract

In this work, we report that gold nanorods coated with hydrophobically-modified mesoporous silica shells not only enhance photoacoustic (PA) signal over unmodified mesoporous silica coated gold nanorods, but that the relationship between PA amplitude and input laser fluence is strongly nonlinear. Mesoporous silica shells of ~14 nm thickness and with ~3 nm pores were grown on gold nanorods showing near infrared absorption. The silica was rendered hydrophobic with addition of dodecyltrichlorosilane, then re-suspended in aqueous media with a lipid monolayer. Analysis of the PA signal revealed not only an enhancement of PA signal compared to mesoporous silica coated gold nanorods at lower laser fluences, but also a nonlinear relationship between PA signal and laser fluence. We attribute each effect to the entrapment of solvent vapor in the mesopores: the vapor has both a larger expansion coefficient and thermal resistance than silica that enhances conversion to acoustic energy, and the hydrophobic porous surface is able to promote phase transition at the surface, leading to a nonlinear PA response even at fluences as low as 5 mJ cm-2. At 21 mJ cm-2, the highest laser fluence tested, the PA enhancement was >12-fold over mesoporous silica coated gold nanorods.

Keywords: Photoacoustic imaging; cavitation; gold nanorod; mesoporous silica; nonlinear optics.