Darolutamide added to docetaxel augments antitumor effect in models of prostate cancer through cell cycle arrest at the G1-S transition

Mol Cancer Ther. 2023 Nov 30. doi: 10.1158/1535-7163.MCT-23-0420. Online ahead of print.

Abstract

Resistance to taxane chemotherapy is frequently observed in metastatic prostate cancer. The androgen receptor (AR) is a major driver of prostate cancer and a key regulator of the G1-S cell cycle checkpoint, promoting cancer cell proliferation by irreversible passage to the S-phase. We hypothesized that AR signaling inhibitor (ARSi) darolutamide in combination with docetaxel could augment antitumor effect by impeding the proliferation of taxane-resistant cancer cells. We monitored cell viability in organoids, tumor volume and PSA secretion in patient-derived xenografts (PDXs) and analyzed cell cycle and signaling pathway alterations. Combination treatment increased anti-tumor effect in androgen-sensitive, AR-positive prostate cancer organoids and PDXs. Equally beneficial effects of darolutamide added to docetaxel were observed in a castration-resistant model, progressive on docetaxel, enzalutamide and cabazitaxel. In vitro studies showed that docetaxel treatment with simultaneous darolutamide resulted in a reduction of cells entering the S-phase in contrast to only docetaxel. Molecular analysis in the prostate cancer cell line LNCaP revealed an upregulation of Cyclin Dependent Kinase inhibitor p21, supporting blockade of S-phase entry and cell proliferation. Our results provide a preclinical support for combining taxanes and darolutamide as a multimodal treatment strategy in metastatic prostate cancer patients progressive on ARSi and taxane chemotherapy.