Sage leaf rock rose water extract: a bio-solution for enhancing the growth and salt stress resistance of sorghum plants

Physiol Mol Biol Plants. 2023 Sep;29(9):1339-1352. doi: 10.1007/s12298-023-01370-0. Epub 2023 Oct 29.

Abstract

Sorghum bicolor, a versatile cereal grain, holds significant agronomic importance globally and plays a crucial role in addressing food insecurity. However, salinity, a major abiotic stress, poses a threat to food production by reducing soil fertility and hindering plant growth and yield. In this study, we investigated the potential of Cistus salviifolius water extract (CSE) in mitigating salt stress in sorghum plants. Salt stress severely impacted plant growth, biomass, and chlorophyll production, and reduced indole-3-acetic acid (IAA) levels, which negatively affected plant development. Salt stress also led to the buildup of reactive oxygen species (ROS), hence, resulting in oxidative harm to sorghum plants and also affecting their carbon and nitrogen metabolism. On the other hand, CSE treatments increased IAA and chlorophyll content which promoted growth under stress. Furthermore, this extract exhibited strong ROS scavenging capacity and safeguarded plants against oxidative stress by enhancing the activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, glutathione-S-transferase, and glutathione reductase) and increasing the production of osmolytes. Additionally, CSE treatments enhanced the activities of carbon/nitrogen enzymes (phosphoenolpyruvate carboxylase, malate dehydrogenase, glutamate dehydrogenase, aspartate aminotransferase, and glutamine synthase), promoting energy synthesis and crop growth. This led to a significant increase in sorghum growth in salted soil with the highest rise recorded for 5 mg/L of CSE (an increase of 48.23% and 158.36% in length and weight compared to the salt control), which highlights this extract's potential as a biostimulant to enhance crop tolerance to salinity and contribute to sustainable agriculture.

Keywords: Antioxidant enzymes; Carbon-nitrogen metabolism; Osmolytes; Reactive oxygen species; Salt stress; cistus salviifolius.