Fe3O4/CuO/Chitosan Nanocomposites: An Ultrasound-Assisted Green Approach for Antibacterial and Photocatalytic Properties

ACS Omega. 2023 Nov 3;8(45):42429-42439. doi: 10.1021/acsomega.3c04956. eCollection 2023 Nov 14.

Abstract

The fundamental goal of this research was to use an environmentally friendly sonochemical method to synthesize a Fe3O4/CuO/chitosan magnetic nanocomposite. The nanocomposites featured particle sizes ranging from 50 to 90 nm, and structural characteristics were thoroughly examined. Moreover, the material displayed selective photodegradation capabilities with MB, achieving an impressive efficiency of nearly 98% within 180 min under specific conditions. Notably, the material's reusability was remarkable, maintaining an efficiency of approximately 88% even after five cycles. The possible photodegradation mechanism was proposed based on the evaluation of energy bands, along with a comprehensive analysis of the impacts on MB photodegradation. Concurrently, adsorption isotherms and kinetic models were evaluated. Additionally, this material exhibited promising antibacterial activity against Saccharomyces cerevisiae, Bacillus subtilis, and Escherichia coli. These findings suggested that the Fe3O4/CuO/chitosan material could be utilized in real-world scenarios for environmental purification due to its ability to function as a photocatalyst and antibacterial agent.