Dual S-Scheme Heterojunction CdS/TiO2/g-C3N4 Photocatalyst for Hydrogen Production and Dye Degradation Applications

ACS Omega. 2023 Nov 2;8(45):43139-43150. doi: 10.1021/acsomega.3c06759. eCollection 2023 Nov 14.

Abstract

This study investigated a ternary CdS/TiO2/g-C3N4 heterojunction for degrading synthetic dyes and hydrogen production from aqueous media through visible light-initiated photocatalytic reactions. CdS, TiO2, and g-C3N4 were combined in different mass ratios through a simple hydrothermal method to create CdS/TiO2/g-C3N4 composite photocatalysts. The prepared heterojunction catalysts were investigated by using FTIR, XRD, EDX, SEM, and UV-visible spectroscopy analysis for their crystal structures, functional groups, elemental composition, microtopography, and optical properties. The rhodamine B dye was then degraded by using fully characterized photocatalysts. The maximum dye degradation efficiency of 99.4% was noted in these experiments. The evolution rate of hydrogen from the aqueous solution with the CdS/TiO2/g-C3N4 photocatalyst remained 2910 μmol·h-1·g-1, which is considerably higher than those of g-C3N4, CdS, CdS/g-C3N4, and g-C3N4/TiO2-catalyzed reactions. This study also proposes a photocatalytic activity mechanism for the tested ternary CdS/TiO2/g-C3N4 heterojunctions.