Fabrication and Characterization of a Polydopamine-Modified Bacterial Cellulose and Sugarcane Filter Cake-Derived Hydroxyapatite Composite Scaffold

ACS Omega. 2023 Nov 3;8(45):43295-43303. doi: 10.1021/acsomega.3c07266. eCollection 2023 Nov 14.

Abstract

The search for environmentally friendly and sustainable sources of raw materials has been ongoing for quite a while, and currently, the utilization and applications of agro-industrial biomass residues in biomedicine are being researched. In this study, a polydopamine (PDA)-modified bacterial cellulose (BC) and hydroxyapatite (HA) composite scaffold was fabricated using the freeze-drying method. The as-prepared hydroxyapatite was synthesized via the chemical precipitation method using sugarcane filter cake as a calcium source, as reported in a previous study. X-ray diffraction analysis revealed a carbonated phase of the prepared hydroxyapatite, similar to that of the natural bone mineral. Wide-angle X-ray scattering analysis revealed the successful fabrication of BC/HA composite scaffolds, while X-ray photoelectron spectroscopy suggested that PDA was deposited on the surface of the BC/HA composite scaffolds. In vitro cell viability assays indicated that BC/HA and PDA-modified composite scaffolds did not induce cytotoxicity and were biocompatible with MC3T3-E1 preosteoblasts. PDA-modified composite scaffolds showed enhanced protein adsorption capacity in vitro compared to the unmodified scaffolds. On a concluding note, these results demonstrate that agro-industrial biomass residues have the potential to be used in biomedical applications and that PDA-modified BC/HA composite scaffolds are a promising biomaterial for bone tissue engineering.