Ultraviolet disinfection (UV-D) robots: bridging the gaps in dentistry

Front Oral Health. 2023 Nov 1:4:1270959. doi: 10.3389/froh.2023.1270959. eCollection 2023.

Abstract

Maintaining a microbe-free environment in healthcare facilities has become increasingly crucial for minimizing virus transmission, especially in the wake of recent epidemics like COVID-19. To meet the urgent need for ongoing sterilization, autonomous ultraviolet disinfection (UV-D) robots have emerged as vital tools. These robots are gaining popularity due to their automated nature, cost advantages, and ability to instantly disinfect rooms and workspaces without relying on human labor. Integrating disinfection robots into medical facilities reduces infection risk, lowers conventional cleaning costs, and instills greater confidence in patient safety. However, UV-D robots should complement rather than replace routine manual cleaning. To optimize the functionality of UV-D robots in medical settings, additional hospital and device design modifications are necessary to address visibility challenges. Achieving seamless integration requires more technical advancements and clinical investigations across various institutions. This mini-review presents an overview of advanced applications that demand disinfection, highlighting their limitations and challenges. Despite their potential, little comprehensive research has been conducted on the sterilizing impact of disinfection robots in the dental industry. By serving as a starting point for future research, this review aims to bridge the gaps in knowledge and identify unresolved issues. Our objective is to provide an extensive guide to UV-D robots, encompassing design requirements, technological breakthroughs, and in-depth use in healthcare and dentistry facilities. Understanding the capabilities and limitations of UV-D robots will aid in harnessing their potential to revolutionize infection control practices in the medical and dental fields.

Keywords: COVID-19; artificial intelligence; dentistry; disinfection robot; robot sterilization; ultraviolet disinfection.

Publication types

  • Review

Grants and funding

The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.