Peg-in-hole assembly skill imitation learning method based on ProMPs under task geometric representation

Front Neurorobot. 2023 Nov 9:17:1320251. doi: 10.3389/fnbot.2023.1320251. eCollection 2023.

Abstract

Introduction: Behavioral Cloning (BC) is a common imitation learning method which utilizes neural networks to approximate the demonstration action samples for task manipulation skill learning. However, in the real world, the demonstration trajectories from human are often sparse and imperfect, which makes it challenging to comprehensively learn directly from the demonstration action samples. Therefore, in this paper, we proposes a streamlined imitation learning method under the terse geometric representation to take good advantage of the demonstration data, and then realize the manipulation skill learning of assembly tasks.

Methods: We map the demonstration trajectories into the geometric feature space. Then we align the demonstration trajectories by Dynamic Time Warping (DTW) method to get the unified data sequence so we can segment them into several time stages. The Probability Movement Primitives (ProMPs) of the demonstration trajectories are then extracted, so we can generate a lot of task trajectories to be the global strategy action samples for training the neural networks. Notalby, we regard the current state of the assembly task as the via point of the ProMPs model to get the generated trajectories, while the time point of the via point is calculated according to the probability model of the different time stages. And we get the action of the current state according to the target position of the next time state. Finally, we train the neural network to obtain the global assembly strategy by Behavioral Cloning.

Results: We applied the proposed method to the peg-in-hole assembly task in the simulation environment based on Pybullet + Gym to test its task skill learning performance. And the learned assembly strategy was also executed on a real robotic platform to verify the feasibility of the method further.

Discussion: According to the result of the experiment, the proposed method achieves higher success rates compared to traditional imitation learning methods while exhibiting reasonable generalization capabilities. It shows that the ProMPs under geometric representation can help the BC method make better use of the demonstration trajectory and thus better learn the task skills.

Keywords: Behavioral Cloning; imitation learning; peg-in-hole assembly; probabilistic movement primitives; robot manipulation planning.

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by the Basic Research on Free Exploration of Shenzhen Virtual University Park (2021Szvup085), National Natural Science Foundation of China (U2013602, 52075115, 51521003, and 61911530250), National Key R&D Program of China (2020YFB13134, 2020YFB1313401, 2020YFB1313403, and 2022YFB4601802), SelfPlanned Task (SKLRS202001B, SKLRS202110B, and SKLRS202301A12) of State Key Laboratory of Robotics and System (HIT), Shenzhen Science and Technology Research and Development Foundation (JCYJ20190813171009236), and Basic Scientific Research of Technology (JCKY2020603C009).