Potentially Functional Genetic Variants in the NRF2 Signaling Pathway Genes are Associated With HBV-related Hepatocellular Carcinoma Survival

J Cancer. 2023 Oct 16;14(18):3387-3396. doi: 10.7150/jca.88561. eCollection 2023.

Abstract

The nuclear factor E2-related factor 2 (NRF2) signaling pathway is one of the most important cell defense pathways. However, it is unclear whether genetic variants in NRF2 signaling pathway genes are associated with the survival of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). In the present study, we utilized a new hypothesis-driven approach based on biological pathways to investigate the associations between 17919 single nucleotide polymorphisms (SNPs) in 137 NRF2 signaling pathway genes and the overall survival (OS) of 866 patients with HBV-related HCC. As a result, two independent SNPs with potential biological function were identified to be significantly associated with HBV-related HCC OS: [SLC2A9 rs28643326 T>C: hazard ratio (HR) = 0.74, 95% confidence interval (95% CI) = 0.62-0.89, P < 0.001 and SLC5A10 rs2472711 G>T: HR = 0.81, 95% CI = 0.71-0.93, P = 0.003, respectively]. The expression quantitative trait loci (eQTL) analysis further revealed that the rs28643326 C allele was significantly associated with increased levels of SLC2A9 mRNA expression (P < 0.001), and higher mRNA expression levels of SLC2A9 in adjacent normal liver tissues were associated with better survival. Although the association between the rs2472711 T allele and the mRNA expression of SLC5A10 was not statistically significant (P = 0.200), the fact that rs2472711 is located at the DNase I hypersensitivity site and is a marker for promoter and enhancer histones also suggests that it may have the function of regulating its corresponding gene expression. In conclusion, genetic variants of NRF2 signaling pathway genes may serve as potential prognostic biomarkers for HBV-related HCC and also provide a solid basis for further mechanistic exploration.

Keywords: HBV-related HCC; NRF2; OS; SNPs; eQTL.