Electrically tunable gradient-index lenses via liquid crystals: beyond the power law

Opt Express. 2023 Nov 6;31(23):37843-37860. doi: 10.1364/OE.504586.

Abstract

In this study we present an investigation of electrically tunable progressive lenses utilizing liquid crystals (LC). We introduce a polarized progressive LC lens capable of dynamically adjusting its focal length, functioning as either a positive or negative lens. Our findings reveal that the spatial distribution of lens power within the progressive LC lens, ranging from +4D to -3D, far surpassing the range of -0.87D to +0.87D which one may expect within the parabolic wavefront approximation. For a lens with a 30 mm aperture a total tunable range is 7.6 D (from +5.6D to -2D) which is 4.75 times larger than the traditional parabolic prediction∼1.6D (from +0.8D to -0.8D). This study not only challenges conventional limitations set by optical phase differences in gradient-index LC lenses (the power law) but also ushers in a new possibility for ophthalmic applications. The profound insights and outcomes presented in this paper redefine the landscape of LC lenses, paving the way for transformative advancements in optics and beyond.