Femtosecond laser assisted selective etching of microchannels in lithium niobate

Opt Express. 2023 Nov 6;31(23):37618-37629. doi: 10.1364/OE.500439.

Abstract

Here, we report on the fabrication of cm-long microchannels in LiNbO3 by selective etching of femtosecond laser inscribed tracks using hydrofluoric acid. We achieved a 1 cm long microchannel after 300 h of etching a single track inscribed into the volume along the optical axis of LiNbO3. Furthermore, we investigated the dependence of the etching behavior on various writing parameters. Highly selective etching with a selectivity up to 104 was achieved and a functional relationship between the etched depth and time was found. Thus, our results set the first milestone for future fabrication of 3D-hollow microstructures in the volume of LiNbO3 combining its outstanding physical properties such as the strong nonlinearity as well as the acousto- and electrooptic properties with both microfluidic and photonic structures in a monolithic setup.