First molecular detection of a novel Babesia species from Haemaphysalis hystricis in Taiwan

Ticks Tick Borne Dis. 2024 Jan;15(1):102284. doi: 10.1016/j.ttbdis.2023.102284. Epub 2023 Nov 27.

Abstract

Newly recorded ticks and emerging tick-borne pathogens have recently been reported in subtropical and tropical East Asia. In this study, a total of 1,615 ticks (259 Haemaphysalis hystricis, 1334 Rhipicephalus microplus, 19 H. flava, and 3 R. haemaphysaloides) were collected by flagging from vegetation in Taiwan during 2019-2021. All 1,615 captured tick samples tested negative for SFTSV and Borrelia, but 12 of 356 tick samples tested positive for PCR amplification of a fragment of the 18S rRNA gene of Babesia spp., with an infection rate of 3.37 % (12/356) and a minimum infection rate of 0.74 % (12/1,615). Among the 12 detected Babesia spp., 11 were identified as Babesia bigemina in R. microplus, and the other one, detected in H. hystricis, was classified as an unnamed novel Babesia sp. Interestingly, the 18S rRNA sequence from the isolate detected in H. hystricis shared 98.79 % to 99.50 % identity with those of recent isolates from Japan, China and Nigeria. The exact origin of the Babesia species is not known, but the findings highlight the importance of international cooperation and the exchange of information on ticks and tick-borne pathogens. This represents a rare report of a Babesia sp. identified in H. hystricis, a tick species that has been proposed as a novel vector for some Babesia spp. This study supports H. hystricis as a possible vector of Babesia spp.

Keywords: Babesia; Borrelia; SFTSV; Taiwan; Tick.

MeSH terms

  • Animals
  • Babesia* / genetics
  • Borrelia*
  • Ixodidae*
  • Rhipicephalus*
  • Taiwan / epidemiology
  • Tick-Borne Diseases*