A molecular mechanism for the "digital" response of p53 to stress

Proc Natl Acad Sci U S A. 2023 Dec 5;120(49):e2305713120. doi: 10.1073/pnas.2305713120. Epub 2023 Nov 28.

Abstract

The tumor suppressor protein p53 accumulates in response to cellular stress and consequently orchestrates the expression of multiple genes in a p53-level and time-dependent manner to overcome stress consequences, for which a molecular mechanism is currently unknown. Previously, we reported that DNA torsional flexibility distinguishes among p53 response elements (REs) and that transactivation at basal p53 levels is correlated with p53 REs flexibility. Here, we calculated the flexibility of ~200 p53 REs. By connecting functional outcomes of p53-target genes' activation to the calculated flexibility of their REs, we show that genes known to belong to pathways that are activated rapidly upon stress contain REs that are significantly more flexible relative to REs of genes known to be involved in pathways that are activated later in the response to stress. The global structural properties of several p53 REs belonging to different pathways were experimentally validated. Additionally, reporter-gene expression driven by flexible p53 REs occurred at lower p53 levels and with faster rates than expression from rigid REs. Furthermore, analysis of published endogenous mRNA levels of p53-target genes as a function of REs' flexibility showed that early versus late genes differ significantly in their flexibility properties of their REs and that highly flexible p53 REs enable high-activation level exclusively to early-response genes. Overall, we demonstrate that DNA flexibility of p53 REs contributes significantly to functional selectivity in the p53 system by facilitating the initial steps of p53-dependent target-genes expression, thereby contributing to survival versus death decisions in the p53 system.

Keywords: DNA twist flexibility; gene-expression regulation; p53; protein/DNA interactions.

MeSH terms

  • DNA / genetics
  • Response Elements*
  • Transcriptional Activation
  • Tumor Suppressor Protein p53* / genetics
  • Tumor Suppressor Protein p53* / metabolism

Substances

  • Tumor Suppressor Protein p53
  • DNA