Within- and Between-Session Reliability of Golf Swing Variables Using the TrackMan Launch Monitor in Talented Golfers

J Strength Cond Res. 2023 Dec 1;37(12):2431-2437. doi: 10.1519/JSC.0000000000004554.

Abstract

Shaw, J, Gould, ZI, Oliver, JL, and Lloyd, RS. Within- and between-session reliability of golf swing variables using the TrackMan launch monitor in talented golfers. J Strength Cond Res 37(12): 2431-2437, 2023-The purpose of the current study was to establish the within- and between-session reliability of the TrackMan launch monitor to measure golf swing variables. Twenty-one golfers attended 2 test sessions, with data captured from 3 golf shots using a 6-iron and 3 using a driver. Club head speed (CHS), ball speed, smash factor, attack angle, club path, launch angle, spin rate, spin axis, carry distance, and total distance were determined from data collected using a TrackMan launch monitor. Within- and between-session reliability for each variable was calculated using repeated-measures analysis of variance, intraclass correlation coefficients (ICCs), and coefficients of variation (CVs) with 95% confidence intervals. Within-session measures of CHS, ball speed, carry distance, and total distance were found to be reliable for both 6-iron and driver (CV ≤ 5.8, ICC ≥ 0.87) and launch angle for the 6-iron (CV = 6.7-9.3%, ICC = 0.87-0.92). Between-session measures of CHS, ball speed, smash factor, launch angle, carry distance, and total distance for both 6-iron and driver (CV% = 0.7-9.1%, ICC = 0.5-0.99) and spin rate for 6-iron (CV% = 9.4%, ICC = 0.89) were also shown to be reliable. These findings indicate that the TrackMan launch monitor is a reliable method for measuring CHS, ball speed, carry distance, and total distance in talented golfers, both within and between sessions. Practitioners can confidently use these variables to assess golf swing performance in golfers and evaluate meaningful changes in response to training interventions.

MeSH terms

  • Biomechanical Phenomena
  • Golf* / physiology
  • Humans
  • Iron
  • Reproducibility of Results

Substances

  • Iron