A Genome Sequence for the Threatened Whitebark Pine

bioRxiv [Preprint]. 2023 Nov 17:2023.11.16.567420. doi: 10.1101/2023.11.16.567420.

Abstract

Whitebark pine (WBP, Pinus albicaulis ) is a white pine of subalpine regions in western contiguous US and Canada. WBP has become critically threatened throughout a significant part of its natural range due to mortality from the introduced fungal pathogen white pine blister rust (WPBR, Cronartium ribicola ) and additional threats from mountain pine beetle ( Dendroctonus ponderosae ), wildfire, and maladaptation due to changing climate. Vast acreages of WBP have suffered nearly complete mortality. Genomic technologies can contribute to a faster, more cost-effective approach to the traditional practices of identifying disease-resistant, climate-adapted seed sources for restoration. With deep-coverage Illumina short-reads of haploid megametophyte tissue and Oxford Nanopore long-reads of diploid needle tissue, followed by a hybrid, multistep assembly approach, we produced a final assembly containing 27.6 Gbp of sequence in 92,740 contigs (N50 537,007 bp) and 34,716 scaffolds (N50 2.0 Gbp). Approximately 87.2% (24.0 Gbp) of total sequence was placed on the twelve WBP chromosomes. Annotation yielded 25,362 protein-coding genes, and over 77% of the genome was characterized as repeats. WBP has demonstrated the greatest variation in resistance to WPBR among the North American white pines. Candidate genes for quantitative resistance include disease resistance genes known as nucleotide-binding leucine-rich-repeat receptors (NLRs). A combination of protein domain alignments and direct genome scanning was employed to fully describe the three subclasses of NLRs (TNL, CNL, RNL). Our high-quality reference sequence and annotation provide a marked improvement in NLR identification compared to previous assessments that leveraged de novo assembled transcriptomes.

Publication types

  • Preprint