Nano spinel NiAl2O4: structure, optical and photocatalytic performance evaluation and optimization

J Phys Condens Matter. 2023 Dec 4;36(10). doi: 10.1088/1361-648X/ad1000.

Abstract

Four kinds of spinel NiAl2O4were synthesized by the polyacrylamide gel method using Al2(SO4)3·18H2O and Al(NO3)3·9H2O as aluminum salts and anhydrous NiSO4and NiSO4·6H2O as nickel salts. The effects of different aluminum salts and nickel salts on the structure, optical and photocatalytic activity of spinel NiAl2O4were confirmed by various characterizations. There is no NiO impurity in the spinel NiAl2O4synthesized with Al2(SO4)3·18H2O as aluminum salt, while NiAl2O4, NiO and C-O functional group coexist in the target product with Al(NO3)3·9H2O as aluminum salt, and C-O functional group and NiO inhibits the photocatalytic activity of the system. Based on photocatalytic experiment, response surface methodology and free radical verification experiment, the influence of experimental parameters including synthesis pathway, initial drug concentration, initialpHand catalyst content on the photocatalytic activity of spinel NiAl2O4and the main active species involved in the reaction were investigated. The degradation percentage of spinel NiAl2O4synthesized with Al2(SO4)3·18H2O as aluminum salt and NiSO4·6H2O as nickel salt was 86.3% at the initial concentration of 50 mg l-1,pH= 5.33 and catalyst content of 1 g l-1. The mechanism investigation confirmed that the C-O functional group plays the dual role of impurity level and electron transfer in the degradation of tetracycline hydrochloride by spinel NiAl2O4.

Keywords: NiAl2O4; active species; impurity level; polyacrylamide gel method; tetracycline hydrochloride.