Determining lineages between individuals with high-density mitochondrial and Y-chromosomal single-nucleotide polymorphisms

Electrophoresis. 2023 Nov 27. doi: 10.1002/elps.202300142. Online ahead of print.

Abstract

Genetic genealogy has been more frequently used in forensic investigations in identifying criminals. However, the current genetic genealogy applications usually do not consider lineage markers (including both Y and mitochondrial deoxyribonucleic acid (DNA)), which is probably because not all distant relatives share the same lineage markers. In addition, there is no study to show how to use lineage markers and what methods or thresholds should be applied in genetic genealogy. In this study, we developed a method to quickly determine if two single-nucleotide polymorphism (SNP) profiles are from the same paternal or material lineages by using a mismatch frequency of the SNPs in Y-chromosomal or mitochondrial DNA. For both Y and mitochondrial SNPs, profile pairs from the same or different lineages can be decided with high accuracies (i.e., 0.380% or 0.157% error rates with Y and mitochondrial DNA, respectively). With kinship coefficient filtering based on autosomal SNPs, the accuracies of determining maternal and paternal lineage can be further improved (i.e., 0.120% or 0.057% error rates with Y and mitochondrial DNA, respectively, using a threshold of kinship coefficient >0). This study shows that lineage markers can be very powerful tools with high accuracies to determine lineages, which could help solve cases and reduce costs for genetic genealogy investigations.

Keywords: forensic genomics; genetic genealogy; kinship coefficient; mismatch distributions; single-nucleotide polymorphisms.