Graphene-edge-supported iron dual-atom for oxygen reduction electrocatalysts

Phys Chem Chem Phys. 2023 Dec 6;25(47):32637-32647. doi: 10.1039/d3cp03642a.

Abstract

Pyrolyzed Fe-N-C-based catalysts, particularly FeN4, are reported to show enhanced catalytic activity for some chemical reactions, particularly for the oxygen reduction reaction (ORR). Here, we present a computational study to investigate another pyrolyzed Fe-N-C-based catalyst, i.e. Fe2N6, adsorbed on graphene with special emphasis on the edges of graphene nanoribbons (both zig-zag and armchair configurations) as a candidate for Fe dual-atom catalysts (Fe-DACs). Utilizing density functional theory calculations along with microkinetic simulations, we investigate the influence of graphitic edges on the stability and ORR activity of Fe-DAC active sites. Our findings indicate that the presence of graphitic edges, particularly the zig-zag configuration, significantly lowers the formation energy of Fe-DAC active sites, making them more likely to form at the edges. Furthermore, several Fe-DAC active sites at graphitic edges exhibit exceptional ORR performance, surpassing the commonly employed FeN4 active site in SAC systems and even exceeding the benchmark Pt(111) surface. Notably, the (Fe2N6)o@z1 active site demonstrates outstanding performance in both associative and dissociative mechanisms. These results highlight the role of graphitic nanopores in enhancing the catalytic behavior of Fe-DAC active sites, providing valuable insights for designing efficient non-precious metal catalysts for ORR applications.