Facilitating Near-Infrared Persistent Luminescence in Cr3+ -Doped Gadolinium Gallium Garnets

Small Methods. 2024 Mar;8(3):e2301001. doi: 10.1002/smtd.202301001. Epub 2023 Nov 27.

Abstract

Near-infrared persistent luminescence (NIR PersL) materials provide great potential in the fields of night vision, biological imaging, and information encryption. However, among various crystal structures, Cr3+ -doped gallium garnets show inferior PersL property, which turns out to be the bottleneck of their versatile applications. The rational design and facile preparation of high-performance NIR PersL materials are crucial for the emerging applications. In this work, a series of Gd3 Mgx Gex Ga5-2x O12 :Cr3+ (x = 0, 0.25, 0.5, 0.75, 1) is investigated by microwave-assisted solid-state (MASS) approach. Furthermore, by employing chemical composition co-substitution, PersL performance is further improved and the optimum working temperature is adjusted to the lower temperature at 10 °C. Trap level distribution of Gd3 Mg0.5 Ge0.5 Ga4 O12 :Cr3+ phosphor is revealed based on the temperature and fading-time dependent PersL and thermoluminescence property. Further study demonstrates the reduction of the bandgap and the trap distribution forwards at shallow-lying trap energy levels. The synergistic effect, from both energy-band manipulation and trap-level optimization, facilitates NIR PersL in Cr3+ -doped gadolinium gallium garnets. These findings confirm the applicability of MASS-based bandgap and defect level engineering for improving the PersL properties in non/inferior-PersL materials. This burgeoning MASS method may facilitate a wide range of PersL materials for various emerging applications.

Keywords: gadolinium gallium garnets; microwave-assisted solid-state synthesis; near-infrared emission; persistent luminescence; trap distribution manipulation.