Preparation of Novel Organic Polymer Semiconductor and Its Properties in Transistors through Collaborative Theoretical and Experimental Approaches

Polymers (Basel). 2023 Nov 16;15(22):4421. doi: 10.3390/polym15224421.

Abstract

Conjugated polymer semiconductors based on donor-acceptor structures are commonly employed as core materials for optoelectronic devices in the field of organic electronics. In this study, we designed and synthesized a novel acceptor unit thiophene-vinyl-diketopyrrolopyrrole, named TVDPP, based on a four-step organic synthesis procedure. Stille coupling reactions were applied with high yields of polymerization of TVDPP with fluorinated thiophene (FT) monomer. The molecular weight and thermal stability of the polymers were tested and showed high molecular weight and good thermal stability. Theoretical simulation calculations and 2D grazing-incidence wide-angle X-ray scattering (GIWAXS) tests verified the planarity of the material and excellent stacking properties, which are favorable for achieving high carrier mobility. Measurements based on the polymer as an organic thin film transistor (OTFT) device were carried out, and the mobility and on/off current ratio reached 0.383 cm2 V-1 s-1 and 104, respectively, showing its great potential in organic optoelectronics.

Keywords: OTFT; Stille coupling; conjugated polymer; high mobility; optoelectronic devices; semiconductor.