Vascular Tissues Distribution Affects Calcium and Calcium Oxalate Crystals in Fruits of Wild Tomato (Lycopersicon pimpinellifolium (L.) Mill.)

Plants (Basel). 2023 Nov 18;12(22):3893. doi: 10.3390/plants12223893.

Abstract

Tomato fruit is an excellent model for evaluating calcium regulation in plants since it expresses symptoms of either calcium deficiency or calcium excess. Aiming to evaluate the structure of the vascular system and its interactions with calcium and calcium oxalate crystals (CaOx), fruits of Lycopersicon pimpinellifolium were studied. Calcium levels were evaluated in basal, median, and distal pericarp portions, which were also analyzed under a light microscope to describe the structure. The L. pimpinellifolium pericarp shows idioblasts with calcium oxalate crystals. Vascular bundles of the basal pericarp show large transverse sections and abundant xylem vessels. The vascular bundles were smaller in the distal pericarp, and the xylem showed fewer and narrower vessels. The terminal bundles often consisted exclusively of phloem. Despite the differences observed in vascular bundle composition, the density of the vascular system was uniform in the pericarp as a consequence of bundle ramifications that occur at distal portions. The calcium concentration and crystal idioblasts decrease towards the apex of the fruit. The reduction in the xylem:phloem ratio seems to determine the low calcium concentration in the distal fruit portion.

Keywords: blossom-end rot; calcium distribution; calcium oxalate; calcium regulation; calcium-related disorders; tomato disorders; wild tomato; xylem.