Potential Impacts of Certain N2-Fixing Bacterial Strains and Mineral N Doses for Enhancing the Growth and Productivity of Maize Plants

Plants (Basel). 2023 Nov 11;12(22):3830. doi: 10.3390/plants12223830.

Abstract

The enhancing effect of N2-fixing bacterial strains in the presence of mineral N doses on maize plants in pots and field trials was investigated. The OT-H1 of 10 isolates maintained the total nitrogen, nitrogenase activities, IAA production, and detection of NH3 in their cultures. In addition, they highly promoted the germination of maize grains in plastic bags compared to the remainder. Therefore, OT-H1 was subjected for identification and selected for further tests. Based on their morphological, cultural, and biochemical traits, they belonged to the genera Azotobacter. The genomic sequences of 16S rRNA were, thus, used to confirm the identification of the genera. Accordingly, the indexes of tree and similarity for the related bacterial species indicated that genera were exactly closely linked to Azotoacter salinestris strain OR512393. In pot (35 days) and field (120 days) trials, the efficiencies of both A. salinestris and Azospirillum oryzea SWERI 111 (sole/dual) with 100, 75, 50, and 25% mineral N doses were evaluated with completely randomized experimental design and three repetitions. Results indicated that N2-fixing bacteria in the presence of mineral N treatment showed pronounced effects compared to controls. A high value of maize plants was also noticed through increasing the concentration of mineral N and peaked at a dose of 100%. Differences among N2-fixing bacteria were insignificant and were observed for A. oryzea with different mineral N doses. Thus, the utilization of A. oryzea and A. salinestris in their dual mix in the presence of 75 followed by 50% mineral N was found to be the superior treatments, causing the enhancement of vegetative growth and grain yield parameters of maize plants. Additionally, proline and the enzyme activities of both polyphenol oxidase (PPO) and peroxidase (PO) of maize leaves were induced, and high protein contents of maize grains were accumulated due to the superior treatments. The utilization of such N2-fixing bacteria was, therefore, found to be effective at improving soil fertility and to be an environmentally safe strategy instead, or at least with low doses, of chemical fertilizers.

Keywords: 16S rRNA; Azospirillum; Azotobacter; enzyme activities; maize production.

Grants and funding

This research received no external funding.