Environmental Life Cycle Assessment of a Novel Hemp-Based Building Material

Materials (Basel). 2023 Nov 17;16(22):7208. doi: 10.3390/ma16227208.

Abstract

The global construction sector contributes a significant share of total greenhouse gas (GHG) emissions. In Australia, infrastructure activity alone generates 18% of the GHG emissions. The use of low-embodied carbon building materials is crucial to decarbonise the construction sector and fulfil national and international climate goals. Industrial hemp (Cannabis sativa L.) is a promising feedstock for low-carbon construction materials because of its carbon sequestration capacity, fast-growing cycles, and technical functionality comparable to traditional materials. This study utilised the life cycle assessment (LCA) guideline ISO 14040:2006 to estimate the carbon footprint (CF) of hemp-based building materials in Western Australia capturing region-specific variations in terms of inputs, soil, productivity, and energy mix. The functional unit was 1 m2 of a hemp-based board, and the system boundary was cradle-to-gate, i.e., pre-farm, on-farm, and post-farm activities. The CF of 1 m2 of hemp-based board was estimated to be -2.302 kg CO2 eq. Electricity from the public grid for bio-based binder production during the post-farm stage was the main contributor to total CO2 eq emissions (26%), followed by urea production (14%) during the pre-farm stage. Overall, the use of electricity from the public grid during the post-farm stage accounted for 45% of total emissions. Sensitivity analysis showed that the CF of hemp-based boards was highly sensitive to the source of energy; i.e., total replacement of the public grid by solar power decreased the CF by 164% (-2.30 to -6.07 kg CO2 eq). The results suggested that hemp-based boards exhibit lower embodied GHG emissions compared to traditional materials, such as gypsum plasterboards.

Keywords: biomaterials; hemp-based materials; life cycle assessment.