Characterization of the Maximum Height of a Surface Texture

Materials (Basel). 2023 Nov 9;16(22):7109. doi: 10.3390/ma16227109.

Abstract

Average surface height and maximum amplitude can affect surface functions. In the industry, these parameters can be obtained based on profile measurements. However, variability in maximum profile height is high. A more stable parameter can be obtained from the results of the areal surface topography measurements as the average value of the parallel profiles. The aim of this study is to establish this parameter directly from the result of the areal surface texture by correcting the maximum surface height to material ratios in the range of 0.13-99.87%. This method was tested by measuring 100 surface topographies with a stylus profilometer and a white light interferometer. It can be utilized correctly for deterministic textures and random one- and two-process surfaces for which the correlation between neighboring profile ordinates is not very high. In other cases, the method should be modified. Employing this method, the maximum profile amplitude Pt and parameters characterizing the average profile height Pq, Pa, and the ratios Pq/Pa and Pp/Pt describing the shape of the profile ordinate distribution can be correctly estimated. Pq/Pa and Pp/Pt were more stable than the kurtosis Pku and skewness Psk. The corrected maximum height S±3σ can be adopted as a parameter that characterizes the areal surface texture as more stable than the maximum surface height St. Pq/Pa and Pp/Pt were more steady than kurtosis Pku and skewness Psk.

Keywords: parameters; profile; stylus profilometer; surface texture; white light interferometer.

Grants and funding

This research received no external funding.