Discovery, Identification, and Insecticidal Activity of an Aspergillus flavus Strain Isolated from a Saline-Alkali Soil Sample

Microorganisms. 2023 Nov 16;11(11):2788. doi: 10.3390/microorganisms11112788.

Abstract

Aphids are one of the most destructive pests in agricultural production. In addition, aphids are able to easily develop resistance to chemical insecticides due to their rapid reproduction and short generation periods. To explore an effective and environmentally friendly aphid control strategy, we isolated and examined a fungus with aphid-parasitizing activity. The strain (YJNfs21.11) was identified as Aspergillus flavus by ITS, 28S, and BenA gene sequence analysis. Scanning electron microscopy and transmission electron microscopy revealed that the infection hyphae of 'YJNfs21.11' colonized and penetrated the aphid epidermal layer and subsequently colonized the body cavity. Field experiments showed that 'YJNfs21.11' and its fermentation products exerted considerable control on aphids, with a corrected efficacy of 96.87%. The lipase, protease, and chitinase secreted by fungi help aphid cuticle degradation, thus assisting spores in completing the infection process. Additionally, changes were observed in the mobility and physical signs of aphids, with death occurring within 60 h of infection. Our results demonstrate that A. flavus 'YJNfs21.11' exhibits considerable control on Aphis gossypii Glover and Hyalopterus arundimis Fabricius, making it a suitable biological control agent.

Keywords: Aspergillus flavus; aphids; biological control; enzyme activity; fungal spores; histopathology.