Dynamic CT Myocardial Perfusion: The Role of Functional Evaluation in the Diagnosis of Coronary Artery Disease

J Clin Med. 2023 Nov 13;12(22):7062. doi: 10.3390/jcm12227062.

Abstract

Coronary computed tomography angiography (CTA) is a widely accepted, non-invasive diagnostic modality for the evaluation of patients with suspected coronary artery disease (CAD). However, a limitation of CTA is its inability to provide information on the hemodynamic significance of the coronary lesion. The recently developed stress dynamic CT perfusion technique has emerged as a potential solution to this diagnostic challenge. Dynamic CT myocardial perfusion provides information on the hemodynamic consequences of coronary stenosis and is used to detect myocardial ischemia. The combination of stress dynamic CT myocardial perfusion with CTA provides a comprehensive assessment that integrates anatomical and functional information. CT myocardial perfusion has been validated in several clinical studies and has shown comparable accuracy to Positron Emission Tomography (PET) and stress magnetic resonance imaging (MRI) in the diagnosis of hemodynamically significant coronary stenosis and superior performance to Single Photon Emission Computed Tomography (SPECT). More importantly, CTP-derived myocardial perfusion has been shown to have a strong correlation with FFR, and the use of CTP results in a reduction of negative catheterizations. In the context of suspected stable coronary artery disease, the CT protocol with dynamic perfusion imaging combined with CTA eliminates the need for additional testing, making it a convenient "one-stop-shop" method and an effective gatekeeper to an invasive approach.

Keywords: coronary artery disease; coronary computed tomography angiography; coronary stenosis; dynamic myocardial perfusion computed tomography; myocardial ischemia.

Publication types

  • Review

Grants and funding

This research received no external funding.