Automatic Segmentation and Assessment of Valvular Regurgitations with Color Doppler Echocardiography Images: A VABC-UNet-Based Framework

Bioengineering (Basel). 2023 Nov 16;10(11):1319. doi: 10.3390/bioengineering10111319.

Abstract

This study investigated the automatic segmentation and classification of mitral regurgitation (MR) and tricuspid regurgitation (TR) using a deep learning-based method, aiming to improve the efficiency and accuracy of diagnosis of valvular regurgitations. A VABC-UNet model was proposed consisting of VGG16 encoder, U-Net decoder, batch normalization, attention block and deepened convolution layer based on the U-Net backbone. Then, a VABC-UNet-based assessment framework was established for automatic segmentation, classification, and evaluation of valvular regurgitations. A total of 315 color Doppler echocardiography images of MR and/or TR in an apical four-chamber view were collected, including 35 images in the test dataset and 280 images in the training dataset. In comparison with the classic U-Net and VGG16-UNet models, the segmentation performance of the VABC-UNet model was evaluated via four metrics: Dice, Jaccard, Precision, and Recall. According to the features of regurgitation jet and atrium, the regurgitation could automatically be classified into MR or TR, and evaluated to mild, moderate, moderate-severe, or severe grade by the framework. The results show that the VABC-UNet model has a superior performance in the segmentation of valvular regurgitation jets and atria to the other two models and consequently a higher accuracy of classification and evaluation. There were fewer pseudo- and over-segmentations by the VABC-UNet model and the values of the metrics significantly improved (p < 0.05). The proposed VABC-UNet-based framework achieves automatic segmentation, classification, and evaluation of MR and TR, having potential to assist radiologists in clinical decision making of the regurgitations in valvular heart diseases.

Keywords: automatic assessment; automatic segmentation; color Doppler echocardiography; deep learning; valvular heart disease; valvular regurgitation.

Grants and funding

This research received no external funding.