Vasodilator Responses of Perivascular Adipose Tissue-Derived Hydrogen Sulfide Stimulated with L-Cysteine in Pregnancy Hypertension-Induced Endothelial Dysfunction in Rats

Antioxidants (Basel). 2023 Oct 26;12(11):1919. doi: 10.3390/antiox12111919.

Abstract

Endothelium-derived nitric oxide (NO)-induced vasodilation is impaired in pregnancy hypertension. However, the role of perivascular adipose tissue (PVAT)-derived hydrogen sulfide (H2S), as an alternative for counteracting vascular dysfunction, is incompletely clear in hypertensive disorders of pregnancy. Therefore, PVAT-derived H2S-induced vasodilation was investigated in pregnancy hypertension-induced endothelial dysfunction. Non-pregnant (Non-Preg) and pregnant (Preg) rats were submitted (or not) to the deoxycorticosterone (DOCA)-salt protocol and assigned as follows (n = 10/group): Non-Preg, Non-Preg+DOCA, Preg, and Preg+DOCA groups. Systolic blood pressure (SBP), angiogenesis-related factors, determinant levels of H2S (PbS), NO (NOx), and oxidative stress (MDA) were assessed. Vascular changes were recorded in thoracic aortas with PVAT and endothelium (intact and removed layers). Vasorelaxation responses to the substrate (L-cysteine) for the H2S-producing enzyme cystathionine-γ-lyase (CSE) were examined in the absence and presence of CSE-inhibitor DL-propargylglycine (PAG) in thoracic aorta rings pre-incubated with cofactor for CSE (pyridoxal-5 phosphate: PLP) and pre-contracted with phenylephrine. Hypertension was only found in the Preg+DOCA group. Preg+DOCA rats showed angiogenic imbalances and increased levels of MDA. PbS, but not NOx, showed increased levels in the Preg+DOCA group. Pre-incubation with PLP and L-cysteine elevated determinants of H2S in PVAT and placentas of Preg-DOCA rats, whereas no changes were found in the aortas without PVAT. Aortas of Preg-DOCA rats showed that PVAT-derived H2S-dependent vasodilation was greater compared to endothelium-derived H2S, whereas PAG blocked these responses. PVAT-derived H2S endogenously stimulated with the amino acid L-cysteine may be an alternative to induce vasorelaxation in endothelial dysfunction related to pregnancy hypertension.

Keywords: endothelial dysfunction; hydrogen sulfide; perivascular adipose tissue; pregnancy hypertension.