Chemical Composition, Antioxidant Properties and Sensory Aspects of Sponge Cakes Supplemented with Edible Insect Flours

Antioxidants (Basel). 2023 Oct 26;12(11):1912. doi: 10.3390/antiox12111912.

Abstract

The chemical composition, antioxidant properties, and sensory aspects of sponge cakes with the addition of flours from edible insects (buffalo worm, cricket, and mealworm) were evaluated. The addition of edible-insect flours increased the protein, fat, and dietary fiber content in all cases. The utilization of edible insects demonstrated a notable augmentation in the phenolic compounds (especially protocatechuic acid and protocatechuic aldehyde, and syringic, ferulic, and sinapic acids). This resulted in an increase in the antioxidant activity measured against the ABTS radical cation, the DPPH radical, and ferric ions. The antioxidant potential, assessed by four different methods, unequivocally confirmed that the aforementioned polyphenolic compounds found in edible insects provide significant radical-scavenging and antioxidant activity in sponge cakes containing them. The polyunsaturated fatty acid contents were significantly lower in cakes with insect flour compared to the standard wheat cakes. Products and raw materials exhibited high values of the n - 6/n - 3 ratio, which may be associated with negative health effects, with a high oleic acid content. The amino acid score (AAS) for the essential amino acids exceeded 100% for all obtained products. The sponge cakes were accepted by consumers and the taste was the most important predictor for overall acceptability, whereas the structure and appearance had less impact.

Keywords: amino acid profile; antioxidant properties; edible insects; fatty acid profile; nutritional value of protein; texture profile analysis.

Grants and funding

This research received no external funding.