Efficient degradation of phenanthrene by biochar-supported nano zero-valent iron activated persulfate: performance evaluation and mechanism insights

Environ Sci Pollut Res Int. 2023 Dec;30(60):125731-125740. doi: 10.1007/s11356-023-31002-9. Epub 2023 Nov 25.

Abstract

Biochar-supported nano zero-valent iron (BC@nZVI) is a novel and efficient non-homogeneous activator for persulfate (PS). This study aimed to identify the primary pathways, the degradation mechanism and the performance of phenanthrene (PHE) with PS activated by BC@nZVI (BC@nZVI/PS). BC@nZVI as an activator for PS was prepared by liquid phase reduction method. BC@nZVI was characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffractometer and Fourier transform infrared spectroscopy. The effects of the iron-carbon mass ratio and BC@nZVI dosage were investigated, and a pseudo-first-order kinetic model was used to evaluate the PHE degradation. The results showed that BC supported nZVI and inhibited the agglomeration of nZVI, improving PS's activation efficiency. The optimal iron-carbon mass ratio was determined to be 1:4, accompanied by a dosage of 0.6 g/L of BC@nZVI. During PS activation, nZVI was transformed to Fe2+ and Fe3+, with the majority being Fe3+. The reducibility of nZVI in BC@nZVI enabled the reduction of Fe3+ to Fe2+ to activate PS. Radical quenching and electron paramagnetic resonance (EPR) revealed that the oxidative radicals in the BC@nZVI/PS system were mainly SO4-· and ·OH, where SO4-· was the primary free radical under acidic and neutral conditions and ·OH in alkaline conditions. Additionally, BC@nZVI adsorption had a limited role in PHE removal. This study can provide mechanism insights of PHE degradation in water with BC@nZVI activation of the Na2S2O8 system.

Keywords: Biochar-supported nano zero-valent iron; Catalytic oxidation; Persulfate activation; Phenanthrene; Soil and groundwater contamination.

MeSH terms

  • Charcoal / chemistry
  • Iron / chemistry
  • Phenanthrenes*
  • Water Pollutants, Chemical* / analysis

Substances

  • biochar
  • Iron
  • Water Pollutants, Chemical
  • Charcoal
  • phenanthrene
  • Phenanthrenes