Optical Tweezers-Based Measurements of Colloidal Forces between Asphaltene Thin Films: Effect of Ultrasonication

Langmuir. 2023 Dec 5;39(48):17009-17020. doi: 10.1021/acs.langmuir.3c01183. Epub 2023 Nov 24.

Abstract

Oil production and processing often involve the treatment of water-in-oil emulsions stabilized by asphaltenes. The asphaltenes adsorb irreversibly at the water-oil interface and, by self-association at the interface, form a viscoelastic film that stabilizes the emulsions mechanically and sterically. Hydrophobic forces associated with these films may also contribute to the emulsion stability. A key step in treating these emulsions is to weaken the asphaltene film at the interface, and one way to do so is with ultrasonic treatment. The effect of ultrasonic waves on the interactions between asphaltene films was investigated at a silica-water interface using optical tweezers. Silica microparticles were aged in asphaltene solutions to form asphaltene coatings on their surfaces. The particles were dispersed in water, and interparticle force measurements were performed with optical tweezers to capture the steric force and hydrophobic force contributions. The asphaltene coating thickness and hydrophobic coefficient (a factor resembling the strength of the hydrophobic interaction) were obtained from fitting these forces. The effect of ultrasonication on the thickness of the asphaltene films on the surfaces of the particles was investigated. No change in the hydrophobic coefficient was observed upon changing the interfacial asphaltene concentration. The asphaltene film thickness increased with the concentration of the asphaltene solution and aging time. After treatment of the dispersion with ultrasonic waves for different durations (between 5 and 40 min), a significant reduction in the coating thickness was observed. This reduction was confirmed by thermogravimetric analysis (TGA) measurements. It is hypothesized that cavitation at the interface removed part of the surface layer of asphaltenes from the coated particles. Based on these findings, we proved that a low-power ultrasound field can effectively break asphaltene-stabilized water-in-oil emulsions.