Lewis acidic Fe3+-driven catalytic active Ni3+ formation in Fe-free metal-organic framework for enhanced electrochemical glucose sensing

J Colloid Interface Sci. 2024 Feb 15:656:424-439. doi: 10.1016/j.jcis.2023.11.063. Epub 2023 Nov 20.

Abstract

Manipulating metal valence states and porosity in the metal-organic framework (MOF) by alloying has been a unique tool for creating high-valent metal sites and pore environments in a structure that are inaccessible by other methods, favorable for accelerating the catalytic activity towards sensing applications. Herein, we report Fe3+-driven formation of catalytic active Ni3+ species in the amine-crafted benzene-dicarboxylate (BDC-NH2)-based MOF as a high-performance electrocatalyst for glucose sensing. This work took the benefit of different bonding stability between BDC-NH2 ligand, and Fe3+ and Ni2+ metal precursor ions in the heterometallic NixFe(1-x)-BDC-NH2 MOF. The FeCl3 that interacts weakly with ligand, oxidizes the Ni2+ precursor to Ni3+-based MOF owing to its Lewis acidic behavior and was subsequently removed from the structure supported by Ni atoms, during solvothermal synthesis. This enables to create mesopores within a highly stable Ni-MOF structure with optimal feed composition of Ni0.7Fe0.3-BDC-NH2. The Ni3+-based Ni0.7Fe0.3-BDC-NH2 demonstrates superior catalytic properties towards glucose sensing with a high sensitivity of 13,435 µA mM-1 cm-2 compared to the parent Ni2+-based Ni-BDC-NH2 (10897 μA mM-1cm-2), along with low detection limit (0.9 μM), short response time (≤5 s), excellent selectivity, and higher stability. This presented approach for fabricating high-valent nickel species, with a controlled quantity of Fe3+ integrated into the structure allowing pore engineering of MOFs, opens new avenues for designing high-performing MOF catalysts with porous framework for sensing applications.

Keywords: Bimetallic catalyst; Electrocatalyst; Glucose sensing; Lewis acid; Metal-Organic Framework; Nickel catalyst.