Instrumentation development, improvement, simplification, and miniaturization: The multifunctional plate source for use in mass spectrometry

Eur J Mass Spectrom (Chichester). 2023 Oct;29(5-6):276-291. doi: 10.1177/14690667231211486.

Abstract

In remembrance of Prof. Dr Przybylski, we are presenting a vision towards his beloved mass spectrometry (MS) and its far-reaching promises outside of the academic laboratory. Sub-atmospheric pressure (AP) ionization MS is well positioned to make a step-change in direct ionization, a concept that allows sublimation/evaporation ionization and mass analyses of volatile and nonvolatile molecules from clean or dirty samples, directly, accurately, sensitively, and in a straightforward manner that has the potential to expand the field of MS into unchartered application areas. Contrary to ambient ionization MS, ionization commences in the sub-AP region of the mass spectrometer, important for practical and safety reasons, and offers inter alia, simplicity, speed, sensitivity, and robustness directly from real-world samples without cleanup. The plate source concept, presented here, provides an easy to use, rapid, and direct sample introduction from AP into the sub-AP of a mass spectrometer. Utilizing sub-AP ionization MS based on the plate source concept, small to large molecules from various environments that would be deemed too dirty for some direct MS methods are demonstrated. The new source concept can be expanded to include multiple ionization methods using the same plate source "front end" without the need to vent the mass spectrometer between the different methods, thus allowing ionization of more compounds on the same mass spectrometer for which any one ionization method may be insufficient. Examples such as fentanyl, gamma-hydroxybutyric acid, clozapine, 1-propionyllysergic acid, hydrocodone angiotensin I and II, myoglobin, and carbonic anhydrase are included.

Keywords: Direct ionization mass spectrometry; fast; novice user; plate source; robust; safety; sensitive; sub-atmospheric pressure ionization mass spectrometry.