High-Entropy Lead-Free Perovskite Bi0.2K0.2Ba0.2Sr0.2Ca0.2TiO3 Powders and Related Ceramics: Synthesis, Processing, and Electrical Properties

Nanomaterials (Basel). 2023 Nov 19;13(22):2974. doi: 10.3390/nano13222974.

Abstract

A novel high-entropy perovskite powder with the composition Bi0.2K0.2Ba0.2Sr0.2Ca0.2TiO3 was successfully synthesized using a modified Pechini method. The precursor powder underwent characterization through Fourier Transform Infrared Spectroscopy and thermal analysis. The resultant Bi0.2K0.2Ba0.2Sr0.2Ca0.2TiO3 powder, obtained post-calcination at 900 °C, was further examined using a variety of techniques including X-ray diffraction, Raman spectroscopy, X-ray fluorescence, scanning electron microscopy, and transmission electron microscopy. Ceramic samples were fabricated by conventional sintering at various temperatures (900, 950, and 1000 °C). The structure, microstructure, and dielectric properties of these ceramics were subsequently analyzed and discussed. The ceramics exhibited a two-phase composition comprising cubic and tetragonal perovskites. The grain size was observed to increase from 35 to 50 nm, contingent on the sintering temperature. All ceramic samples demonstrated relaxor behavior with a dielectric maximum that became more flattened and shifted towards lower temperatures as the grain size decreased.

Keywords: Bi0.2K0.2Ba0.2Ca0.2Sr0.2TiO3; Pechini method; high-entropy ceramics; perovskite; relaxor.