Synthesis of a tetranitrosyl iron complex with unique structure and properties as an inhibitor of phosphodiesterases

Dalton Trans. 2023 Dec 5;52(47):18090-18101. doi: 10.1039/d3dt03104g.

Abstract

A novel neutral tetranitrosyl iron complex {[Fe(H2O)4]2+[FeR2(NO)2]22-}·4H2O (1) with R = 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiolyls (C7H5N4S), which is a supramolecular ensemble, has been synthesized and studied. As follows from X-ray diffraction analysis, this is an octahedral Fe2+complex (Lewis acid) with two monoanionic dinitrosyl groups [FeR2(NO)2]- (Lewis base) and 4 water molecules as the ligands. As follows from Mössbauer spectra, the coordinating Fe2+ ion is in a low-spin state S = 0, and the dinitrosyl Fe+ ion is in a low-spin state S = 1/2. According to the data of EPR spectroscopy, mass-spectrometry and amperometry, complex 1 in solution forms dinitrosyl particles of [Fe(C7H6N4S-H)2(NO)2]- composition, which are responsible for NO generation. In addition, complex 1 was shown to be a 5-6 times more efficient phosphodiesterase (PDE) inhibitor at 5 × 10-5 M and 10-4 M concentrations than its thioligand. Probable binding sites of the [FeR2(NO)2]- ligand for the bovine PDE1B model have been determined by molecular docking and quantum-chemical calculations.