TNF-α and IFN-γ prestimulation enhances the therapeutic efficacy of human amniotic epithelial stem cells in chemotherapy-induced ovarian dysfunction

Inflamm Regen. 2023 Nov 22;43(1):57. doi: 10.1186/s41232-023-00309-y.

Abstract

Background: Exposure to a harsh ovarian microenvironment induced by chemotherapeutic agents seriously affects the remodeling of ovarian function and follicular development, leading to premature ovarian failure or insufficiency (POF/POI). For decades, the effectiveness of stem cell therapies in POI animal models has been intensively studied; however, strategies to enhance the therapeutic effect of stem cells remain challenging.

Methods: In this study, we first observed the pathological changes of the ovaries at different time points during chemotherapy, including the number of follicles, granulosa cell proliferation, oxidative stress damage, ovarian fibrosis, and inflammatory reaction. Moreover, we investigated whether activated hAECs stimulated by the proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) were more effective than native hAECs in repairing ovarian injury induced by chemotherapy.

Results: The inhibitory effect of chemotherapy drugs on ovarian granulosa cells (GCs) in growing follicles mainly occurred on day 3 after chemotherapy in a mouse model. Then, continued ovarian injury, including oxidative damage and cell death cascades, resulted in the depletion of follicular reserves and inflammation-related ovarian fibrosis. Cytokine array demonstrated that activated hAECs secreted high levels of paracrine cytokines related to extracellular matrix (ECM) remodeling, angiogenesis, and immunomodulation. An in vivo study showed that the engraftment rate of activated hAECs in damaged ovaries was higher than that of native hAECs. Furthermore, activated hAECs in damaged ovaries had significantly upregulated expression of the antioxidant proteins thioredoxin1/2. In addition, activated hAECs had increased numbers of mature follicles and ameliorated the ovarian microenvironment by promoting angiogenesis and reducing ovarian fibrosis.

Conclusions: These results indicated that secondary ovarian damage induced by chemotherapy, including oxidative stress damage, chronic inflammatory response, and ovarian tissue fibrosis should be attended. Prestimulation with the proinflammatory factors TNF-α and IFN-γ could enhance the therapeutic efficacy of hAECs against chemotherapy-induced ovarian dysfunction, which may become a new feasible strategy to improve the therapeutic potential of hAECs in regenerative medicine.

Keywords: Human amniotic epithelial stem cells; Inflammatory cytokine; Oxidative damage; Paracrine secretion; Premature ovarian failure/insufficiency; Prestimulation.