Evidence of plastic pollution from offshore oceanic sources in southern Chilean Patagonian fjords

Sci Total Environ. 2024 Feb 10:911:168706. doi: 10.1016/j.scitotenv.2023.168706. Epub 2023 Nov 21.

Abstract

The Chilean Patagonian fjords are globally renowned as one of the few remaining pristine environments on Earth; however, their ecosystems are under significant threat from climatic and anthropogenic pressures. Of particular concern is the lack of research into the impact of plastic pollution on the waters and biodiversity of these fjords. In this study, the marine environment of a secluded and sparsely populated fjord system in southern Patagonia was sampled to assess microplastics in seawater, beaches, bottom sediment, and zooplankton. Microplastics were found to be widespread across the water surface of the fjord, but with low abundances of 0.01 ± 0.01 particles m-3 (mean ± SD). The presence of microplastics in sedimentary environments (e.g., beaches and bottom sediments, 15.6 ± 15.3 and 9.8 ± 24 particles kg of dry sediment-1, respectively) provided additional evidence of plastic debris accumulation within the fjord system. Furthermore, microplastics were already bioavailable to key zooplankton species of the Patagonian food web (0.01 ± 0.02 particles individual-1), suggesting bioaccumulation. A comprehensive examination of potential microplastic inputs originating from coastal runoff, coupled with distribution of water masses, suggested minimal local contribution of microplastics to the fjord, strongly indicating that plastic litter is likely entering the area through oceanic currents. The composition and type of microplastics, primarily consisting of polyester fibers (approx. 60 %), provided further support for the proposed distant origin and transportation into the fjord by oceanographic drivers. These results raise significant concern as reveal that despite a lack of nearby population, industrial or agricultural activity, remote Patagonian fjords are still impacted by plastic pollution originating from distant sources. Prioritizing monitoring efforts is crucial for effectively assessing the future trends and ecological impact of plastic pollution in these once so-called pristine ecosystems.

Keywords: Coastal discharge; Fibers; Marine sediments; Microplastic; Polyester; South Pacific; Subantarctic water.

MeSH terms

  • Chile
  • Ecosystem
  • Environmental Monitoring / methods
  • Estuaries*
  • Microplastics
  • Plastics
  • Water
  • Water Pollutants, Chemical* / analysis

Substances

  • Microplastics
  • Plastics
  • Water Pollutants, Chemical
  • Water