Anti-UAV410: A Thermal Infrared Benchmark and Customized Scheme for Tracking Drones in the Wild

IEEE Trans Pattern Anal Mach Intell. 2024 May;46(5):2852-2865. doi: 10.1109/TPAMI.2023.3335338. Epub 2024 Apr 3.

Abstract

The perception of drones, also known as Unmanned Aerial Vehicles (UAVs), particularly in infrared videos, is crucial for effective anti-UAV tasks. However, existing datasets for UAV tracking have limitations in terms of target size and attribute distribution characteristics, which do not fully represent complex realistic scenes. To address this issue, we introduce a generalized infrared UAV tracking benchmark called Anti-UAV410. The benchmark comprises a total of 410 videos with over 438 K manually annotated bounding boxes. To tackle the challenges of UAV tracking in complex environments, we propose a novel method called Siamese drone tracker (SiamDT). SiamDT incorporates a dual-semantic feature extraction mechanism that explicitly models targets in dynamic background clutter, enabling effective tracking of small UAVs. The SiamDT method consists of three key steps: Dual-Semantic RPN Proposals (DS-RPN), Versatile R-CNN (VR-CNN), and Background Distractors Suppression. These steps are responsible for generating candidate proposals, refining prediction scores based on dual-semantic features, and enhancing the discriminative capacity of the trackers against dynamic background clutter, respectively. Extensive experiments conducted on the Anti-UAV410 dataset and three other large-scale benchmarks demonstrate the superior performance of the proposed SiamDT method compared to recent state-of-the-art trackers.